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Abstract 

Some basic properties of Riemannian and pseudo-Riemannian vector 

bundles are developed in this paper. By introducing the notions of vector 

bundle   (       ), Riemannian vector bundle  (   ), Riemannian coordinate 

representation *(     )+, we establish some significant results related to these 

concepts. Every vector bundle   admits a Riemannian metric. If   (       ) is a 

vector bundle with Riemannian metric   and 〈  〉 is a fixed Euclidean inner 

product in F, then there is a coordinate representation *(     )+ for   such that 

the maps             are isometries. Finally, oriented Riemannian bundle and 

complex vector bundle are defined and it is shown that if    (        ) is a 

real vector bundle of rank 2r  and        be a  s t rong bundle map such that  

       ,  then   is the underlying real vector bundle of a complex bundle 

  (       ) with complex structure  . 

Keywords: Vector bundle, Riemannian metric, pseudo-Riemannian metric, bundle 

map. 

Introduction 

The notion of vector bundle with extra structure was introduced by R. 

Hermann. Also W. Greub, R.G. Swan, R. Narasimhan and H. Flanders extended the 

work of R. Hermann. Later S. Cairns, R. L. Bishop and R. J. Crittenden generalized the 

properties of Riemannian and pseudo-Riemannian vector bundles with extra 

structure. A vector bundle is a quadruple   (       ) where 

(a) (       ) is a smooth fibre bundle 

(b)   and the fibres      
  ( )     are real linear spaces 
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(c) there is a coordinate representation *(     )+ such that the maps 

          are linear isomorphisms. 

A neighbourhood   in B is called a trivializing neighbourhood for   if there 

is a diffeomorphism            
     such that    (   )    (       ) and 

the induced maps           are linear isomorphisms (Bishop and Crittenden, 1964). 

   is called a trivializing map for    If   (       ) and    (           ) are 

vector bundles, a bundle map (also called a homomorphism of vector bundles) 

       is a smooth fibre-preserving map        such that the restrictions 

          
 
 ( )     are linear. If             is a second bundle map, then 

     is also a bundle map (Greub and Stamm, 1966).   

Let       and     denote the smooth maps of base manifolds induced by 

     and     , then         . A bundle map          is called an 

isomorphism if it is a diffeomorphism. The inverse of a bundle isomorphism is 

obviously again a bundle isomorphism. Inverse bundle isomorphisms  induce 

inverse diffeomorphisms between the base manifolds (Cairns, 1965). Two vector 

bundles   and    are called isomorphic if there is a bundle isomorphism 

     
                
→         A strong bundle map between two vector bundles with the same 

base is a bundle map which induces the identity in the base (Kobayashi and Nomizu, 

1963). Now let            be an  arbi t rary  bundle map inducing         
and choose coordinate representations *(     )+ and *(     )+ for   and 

   respectively. Then smooth maps 

      
  (  )      (   

 ) 

are defined by 

   ( )       
                    

    ( )  

They are called the mapping transformations for   corresponding to the 

given coordinate representations. 

Whitney Sum  

A vector bundle    is called the Whitney sum of the bundles   (    
    )  if there are defined strong bundle maps            and            such that 

         {
             
            

  and  ∑      
 
        

In particular, the fibre    in   over a point     is then the direct sum of 

the fibres   
 .  In this case   is denoted by           .  Next, we suppose that 

            are strong bundle maps. Then a strong bundle map          is given by 
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    ∑          The correspondence (        )       defines a module 

isomorphism 

      ( 
    )

             
→       (         )  

Proposition 1.  Let          be a homomorphism of  vector  bundles 

inducing        between the base manifolds. Then   is an isomorphism if and 

only if 

(1)        is a diffeomorphism,  

(2) each           ( )(   ) is a linear isomorphism.  

Proof. If   is an isomorphism, then (1) and (2) are obvious. Conversely, assume (1) 

and (2) hold. Then   is bijective and     restricts to the linear isomorphisms 

  
       ( )

                
→       . 

It remains to prove that     is smooth. With the aid of trivializing 

neighbourhoods for   and    we can reduce to the case  

                                  

where E, E' are the total manifolds for      and   is the identity map. Then      

defines a smooth map      (    ) and     is the smooth map given by 

   (    )  (   ( )  (  ))           

which completes the proof. 

Proposition 2. The Whitney sum of vector bundles always exists. 

Proof. We shall restrict ourselves to the case    , since the generalization is 

obvious. We assign to each       the vector space   
    

 . Let *(   
  
 )+ and *(     

 )+ be coordinate representations for       and assign to   
   the linear isomorphism 

         
      

           
    

   

Then the construction principle yields a vector bundle  

  ̃  ( ̃          ) 

where  ̃    
    

  and obviously   is the projection map. The inclusions  

  
     

    
    

  

define strong bundle maps   
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         ̃ a n d          ̃.  

The projections  

  
    

      
        

    
      

  

define strong bundle maps      ̃     and      ̃    . These maps satisfy the 

required conditions and so  ̃ i s  the Whitney sum of             .  Hence, the 

Whitney sum of vector bundles always exists. 

Vector Bundles with Extra Structure 

Let   (       ) be a vector bundle of rank r with dual bundle   . 
Then      is a vector bundle of rank 1. We say that    is orientable if there 

exists a            such that  ( )           Such a cross-section is called a 

determinant function in  . Clearly  (   ) is a determinant function in the vector space 

  . 

Theorem 1. A vector bundle   (       ) is orientable if and only if it admits 

a coordinate representation *(      )+ whose coordinate transformations  

   (   )       
           

have positive determinant. 

Proof. Assume that   is orientable and let   be a determinant function in  . Let 

*(      )+ be a coordinate representation for   such that the    are connected. 

Choose a fixed determinant function    in F. Since the    are connected, for 

each  , the linear maps  

               

either all preserve or all reverse the orientations. Let   be an orientation-reversing 

isomorphism of F and define a coordinate representation *(      )+ for   by 

  (   )  {
  (     )                                 

  (   ( ))                                
  

Then each      preserves orientations. Hence     
         preserves orientations, 

that is,    (    
        )   . 

Conversely, assume   that admits a coordinate representation *(      )+  such that  

   (    
          )                

Let    be a determinant function in F and define     
 (     )(   
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        )by 

  (           )    (    
   (  )       

   (  )) 

A simple computation shows that 

  (            )      (    
          )   (             )                     

Now, assume that the cover *  + of B is locally finite, and let *  + be a 

subordinate partition of unity. Define             by 

 (            )  ∑  (   )

 

  (             )            

Since ∑         (   )    and    (    
        )   , it follows that  ( )  

     . So   is orientable and the theorem is proved. 

Riemannian and Pseudo-Riemannian Vector Bundles  

Let   (       ) be a vector bundle. A pseudo-Riemannian metric in   is 

an element       (   ) such that, for each    , the symmetric bilinear form 

 ( ) in    is nondegenerate. The pair (   ) is called a pseudo-Riemannian vector 

bundle. 

If the bilinear forms  ( ) are positive definite for every    , then   is 

called a Riemannian   metric and (   ) is called a Riemannian vector bundle. A 

cross-section   in a pseudo-Riemannian vector bundle is called normed if 

 (   ( )  ( ))         

Proposition 3. Every vector bundle   admits a Riemannian metric. 

Proof. If   =     is trivial and 〈 〉 is a Euclidean metric in F, then 

 (        )  〈     〉                 

defines a Riemannian metric in  . 

Now, let   be arbitrary and let *(      )+ be a coordinate representation 

for   such that *  + is a locally finite open cover of B. Let *  + be a subordinate 

partition of unity. Since the restriction    of   to    is trivial, there is a 

Riemannian metric    in   . We define   by ∑      . Then  ( ) is a Euclidean 

metric in   ; hence   is a Riemannian metric in  . Therefore, every vector bundle   

admits a Riemannian metric. 
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Definition 1. Let    (             ) and   (          
    ) be Riemannian 

bundles and let         be a bundle map.   is called isometric if the linear maps    

are isomorphisms which preserve the inner product. 

Theorem 2. Let   (            ) be a vector bundle with Riemannian metric 

 . Let 〈  〉 be a fixed Euclidean inner product in F. Then there is a coordinate 

representation *(     )+ for   such that the maps  

            

are isometries. 

Proof. It is sufficient to consider the case that   =     is trivial. We denote 

 ( ) by 〈  〉   and let     denote the vector space F endowed with t h e  in n e r  

p rodu c t  〈  〉  . L e t  *          + b e  an  o r thono rma l  b a s i s  o f  F with respect 

to 〈  〉. 

Now let *  ( )       ( )+ be the orthonormal basis of    obtained from *    
      + by the Gram-Schmidt process: 

  ( )   〈  ( )   ( )〉 
  

 ⁄   ( )  

where 

  ( )      ∑〈       ( )〉   ( )

   

   

  

It follows from this formula that the maps           are smooth. Hence a 

coordinate representation for   is given by (   ), where         is defined 

by  

 (   )  (   ∑〈    〉  ( )

 

)  

Moreover, each         is an isometry. Hence the proof of the theorem is 

complete. 

Definition 2. Let   (       ) be a vector bundle with Riemannian metric  . 

Let 〈  〉 be a fixed Euclidean inner product in F. Then the coordinate 

representation *(     )+ is called a Riemannian coordinate representation for   such 

that the maps            are isometries. 



Barisal University Journal Part 1, Vol. 4(1):35-45 (2017) Alam & Hossain. 

41 

Proposition 4. If (    ) and (    ) are Riemannian vector bundles over the same 

base B and      (   ) is an isomorphism, then there exists an isometric 

isomorphism 

    
              
→      . 

Proof. Since h induces a Riemannian metric   ̃ on   with respect to    which is an 

isometry, we may assume that      We define      (   ) by 

 (     ( )  )   (     )                

Since h(x) and g(x) are inner products, each     
 (  ). There is a unique 

    
 (  ) which satisfies   

      and which depends smoothly on   . Thus the 

induced bundle map          is a strong isometric isomorphism, which completes the 

proof. 

Lemma 1.  Suppose that    (           ) is  a subbundle of a  Riemannian 

vector bundle (  (            )  ) and that 〈  〉 is an inner product for F. 

Then there exists a Riemannian coordinate representation *(      )      + for 

  such that if    is the restriction of    to     , then *(      )+ is a coordinate 

representation of   .  

Proof. For each     we can find a neighbourhood    and a basis *     

  + (        ) of     (   ).  In particular *  ( )     ( )+ is a linearly 

independent set of vectors in    and so there are                    such that 
*  ( )     ( )+ is a basis for   . In view of the continuity of the map 

    ( )      ( )    
               ,           , 

there exists a neighbourhood     of a such that *  ( )     ( )+ forms a basis 

of          . Applying the Gram-Schmidt process we obtain new cross-sections 

        in     (   ) such that *  ( )     ( )+ is an orthonormal basis of    

with respect to  ( ). Since *  ( )     ( )+ is a basis of    (    ), it follows 

from the construction that *  ( )     ( )+ is a basis of    . 

Now we choose an orthonormal basis *       + of F such that *     
  + is a basis for H. We define maps              

      by 

  (   ∑    )  ∑    ( )               

Then *(     )     + is the required coordinate representation of  , which 

completes the proof. 
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Proposition 5. If   is a subbundle of  , there is a second subbundle   of   such that 

  is the Whitney sum of   and  . 

Proof.  We assign to   a Riemannian metric  .  Choose an inner product 
〈  〉 for F and let *(      )    + be a coordinate representation for   satisfying the 

conditions of Lemma 1. 

To construct the subbundle   we use the construction principle. We 

assign the vector space   
  to    , 

  
  *      (     )                +  

Since           (    ) is an isometry which carries H to   , it 

restricts to a linear isomorphism        
 
               
→       

   

The induced maps   ⋂    (  
     ) given by         

           are 

smooth. Thus we obtain a vector bundle   (         
 ), where    ⋃   

 
 . 

Evidently   is a subbundle of  . The inclusions                 extend to a strong 

bundle map            Since          
 , this map restricts to isomorphisms in 

each fibre; hence it is an isomorphism, which completes the proof.  

Oriented Riemannian Bundles and Complex Vector Bundles  

Assume that   is a Riemannian metric in an oriented vector bundle 

  (        ) of rank r. Let    be any dual bundle. Then the induced 

isomorphism         induces a Riemannian metric in    and hence in       There is a 

unique normed cross-section             which is positive with respect to the 

orientation of    It is called the positive normed determinant function in  . For 

each      ( ) is the positive normed determinant function in   . Let   
(            ) be a Riemannian vector bundle of rank r and consider the rank 1 

bundle    . Let    denote the unit sphere of the one-dimensional Euclidean space 

    (    ), then there is a smooth bundle  ̃  ( ̃        ) such that           

Proposition 6. If B is connected, then  ̃ is connected if and only if   is not 

orientable.  

Proof. Since   preserves open and closed sets, so it maps each component of  ̃ 

on to the connected manifold B. Since    ( )(   ) consists of two points, there 

are two possibilities:  

(a)  ̃  is connected  

(b)  ̃ has two components  ̃   ̃  and   restricts to diffeomorphisms      ̃ 
              
→         
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If  ̃ is not connected          ̃  may be interpreted as a cross-section 

with no zeros in    ; hence   is orientable. 

Conversely, suppose that   is orientable. Choose orientations in   and in 

F, and choose   , so that each      is orientation preserving. Then  

            
                  

Thus    defines a diffeomorphism 

      
              
→      ̃  

In particular,  ̃ is not connected. Hence, if B is connected, then  ̃ is 

connected if and only if   is not orientable. 

Definition 3. A complex vector bundle is a quadruple   (         ) where 

(a) (       ) is a smooth fibre bundle, 

(b) F and the fibres    (   ) are complex linear spaces, 

(c) there is a coordinate representation *(      )+ for   such that the maps 

          are complex linear isomorphisms. 

Let   (        ) be a complex vector bundle of rank r. Let    be the 2r-

dimensional real vector space underlying F and let           be multiplication by 

       Let    (        ) be the real vector bundle obtained by forgetting the 

complex structure and let     (      ) be the strong bundle isomorphism which 

restricts to multiplication by i in each (  )  (  ) . Then, if *(      )+ is a 

coordinate representation for  , we have           ( )                is called 

the complex structure of  . 

Proposition 7. Let    (        ) be a real vector bundle of rank 2r .  Let  

       be a  s t rong bundle  map such that           Let F be a complex 

space with underlying real space   . Then   is the underlying real vector bundle 

of a complex bundle   (       ) with complex structure  . 

Proof.  We must find a coordinate representation *(      )+ for   such that 

           ( )                      

Let     be arbitrary and choose a basis for (  )  of the form 

                        There are          such that  

  ( )     (       )  
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By the continuity of the map 

     ( )         ( )  (    )( )      (    )( )  

there is a neighbourhood U of a such that *     |   ̅  (    )|           + 
form a basis for     ( | ). 

Let *           (  )    (  )+ be a basis for    and we define          
      by 

 (    )     ( )     

 (   (  ))   ̅ ( )               

(   ) is a trivializing chart of   and               . Since U is a 

neighbourhood of an arbitrary point    , the proposition is proved.  

Conclusion 

The results are unchanged if we replace   by   and real vector bundles by 

complex vector bundles. In particular we have the notion of complex bundle maps (the 

fibres being complex linear), the module of complex p-linear mappings. Also a Hermitian 

metric can be introduced in every complex vector bundle. If (   ) is a Hermitian 

complex vector bundle, there exists a coordinate representation *(      )+ of   such that 

the mappings           are Hermitian isometries. 
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